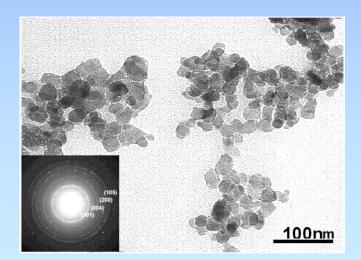
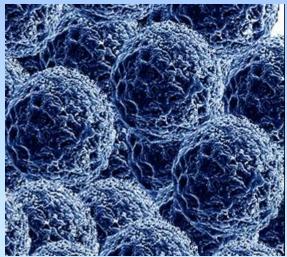
Nanomaterialien – Synthese, Charakterisierung und Eigenschaften

Prof. Dr. Johann Plank Department Chemie


Technische Universität München

Nanopartikel

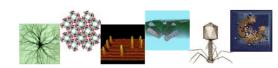
Sonnencreme



TiO₂ Nanopartikel

Desinfektion von Trinkwasser

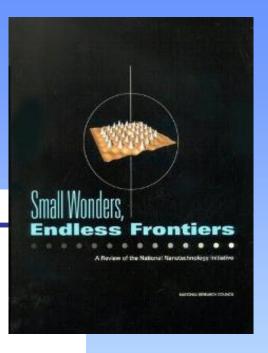
Ag Nanopartikel



National Nanotechnology Initiative

National Nanotechnology Initiative

THE INITIATIVE AND ITS IMPLEMENTATION PLAN



Detailed Technical Report Associated with the Supplemental Report to the President's FY 2003 Budget

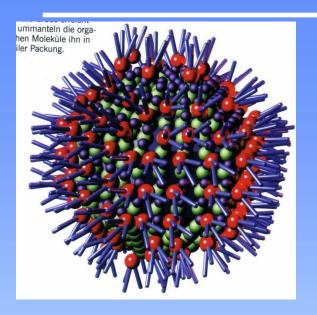
National Science and Technology Council Committee on Technology

Subcommittee on Nanoscale Science, Engineering and Technology

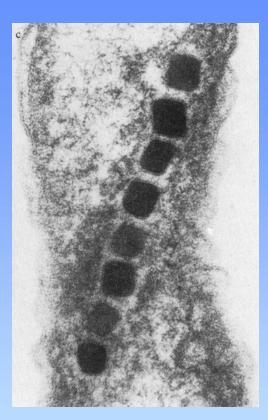
une 2002

Nanostruktierierte Oberflächen - Beispiele

Selbstreinigende Dachpfannen



Selbstreinigende Jeans


Selbstreinigender Autolack

Nanopartikel

Magnetit Nanokristalle in Bakterien

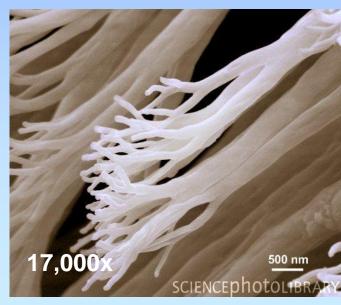
Größenabhängige Lichtabsorption und Lumineszenz von Nanopartikeln

Nanopartikel als Katalysatoren:

Automobilkatalysatoren (Pt) Schadstoffabbau (TiO₂) Elektroden in Brennstoffzellen (Pt)

Nanostrukturierte Oberflächen in der Natur

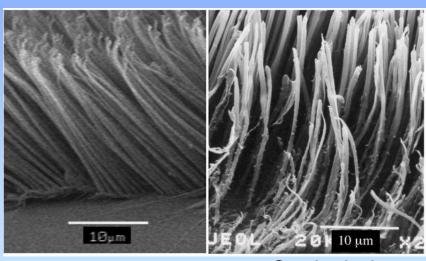
Die Farben von Schmetterlingsflügeln enstehen durch die nanostrukturierte Oberfläche, nicht durch Farbpigmente.


Nanostrukturierte Oberflächen in der Natur

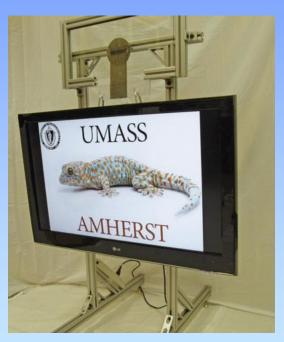
Nanostrukturierte Füße des Geckos ermöglichen exzellente Klettereigenschaften.

Nanostrukturierte Oberflächen in der Natur

Van-der-Waals Kräfte lassen den Gecko an der Oberfläche kleben.



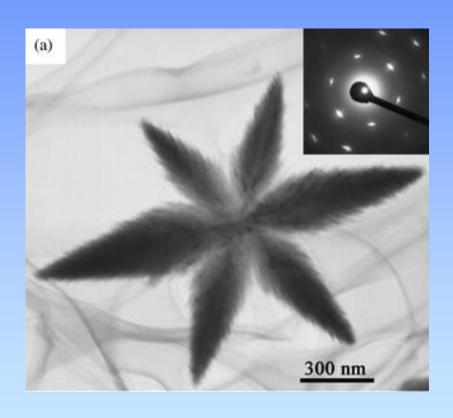
Biomimetik – Lernen von der Natur

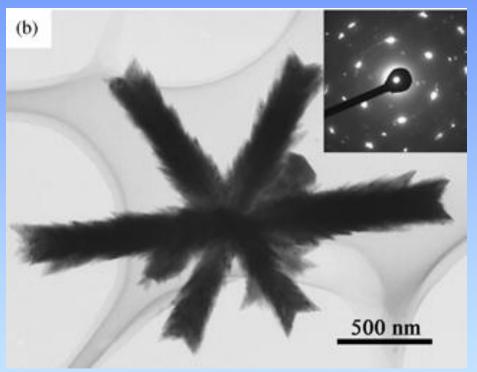

Klebeband ("Gecko-Tape") nach Vorbild des Geckos:

- Starke Haftung ("Anisotrop", also richtungsabhängig)
- Reversibel (kann zerstörungsfrei entfernt werden)
- Wiederverwendbar

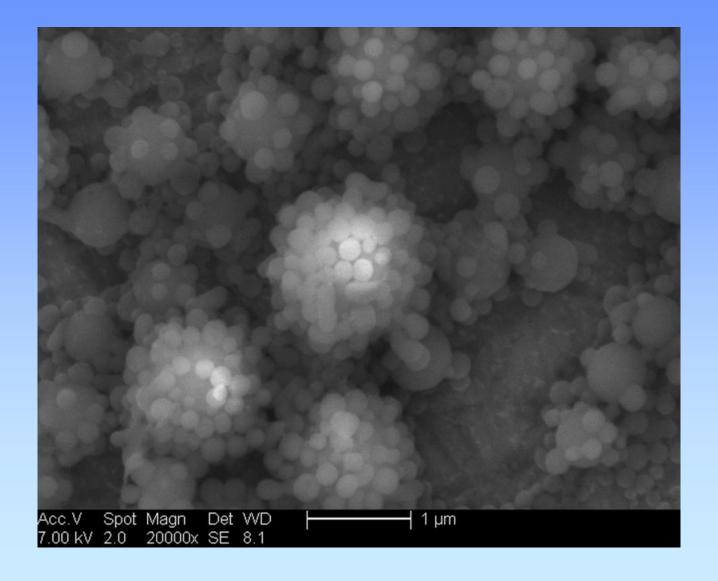
Härchen am Geckofuß

Synthetisch nachgebildete Geckohärchen




10 x 10 cm Gecko-Tape Halten einen 42"-TV auf Glas fest

Anorganische Nanopartikel


Sternförmige Anatas Nanokristalle

Organische Nanopartikel mit Himbeerstruktur

Inhalt der Vorlesung

I Nanopartikel und Kolloide - Definitionen

II Nanopartikel und Kolloide - Allgemeines

- a Brown'sche Molekularbewegung
- b Lichtstreuung
- c Theorien zur Kolloidstabilisierung (DLVO Theorie)
- d Oberflächenladung von Kolloiden (Zetapotential und Strömungspotential)
- e Einfluss von Salzen/Elektrolyten auf die Oberflächenladung
- f Koagulation, Aggregation, Ausflockung

Inhalt der Vorlesung

III Synthese von Nanopartikeln

- a Physikalische Prozesse "Break down" Methoden
- b Chemische Prozesse "Bottom up" Methoden
- Umsetzungen in der Gasphase (CVD, Flammenpyrolyse)

IV Industriell hergestellte Nanopartikel

- a Ruß ("Carbon Black")
- b Pyrogene Kieselsäure

V Sol-Gel Prozess

- a Grundlagen
- b Xerogele und Aerogele

VI Organische Nanopartikel

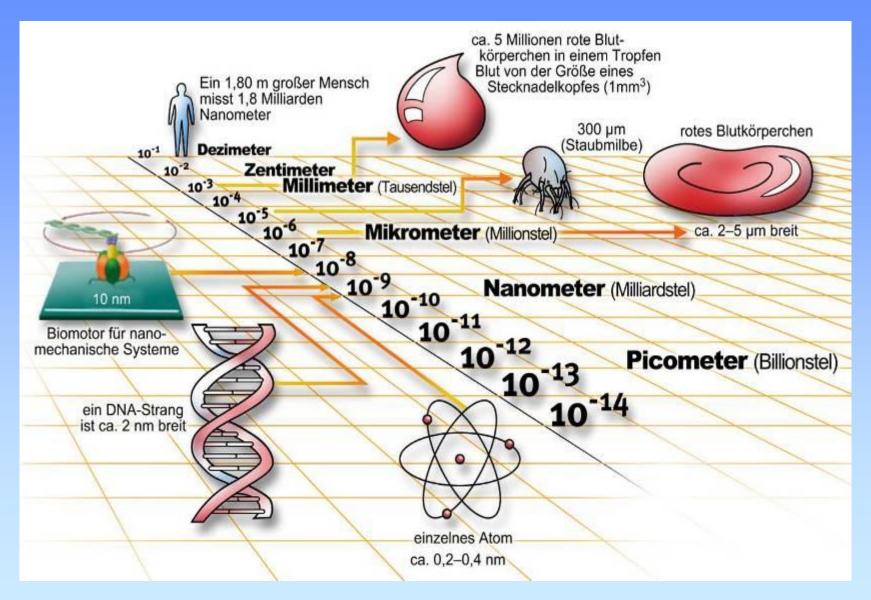
a Latexpartikel und Dispersionen

Inhalt der Vorlesung

VII 3-dimensional nanostrukturierte Materialien

- a Nanoporöse Materialien
- b Nanokristalle
- c Core-shell Partikel
- d Nanokapseln

VIII Nano TiO₂


- a Photokatalyse
- Superhydrophile Eigenschaften Nanostrukturierte selbstreinigende Oberflächen

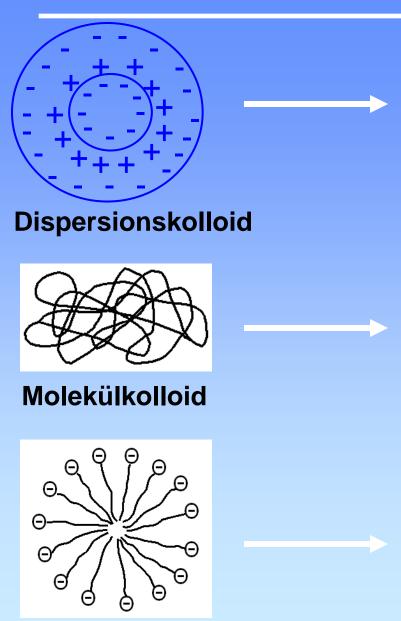
IX Carbon Nanotubes

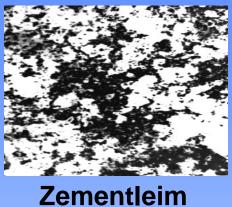
- a SWCTs, DWCTs, MWCTs b Self-assembly von CNTs
- Kristallartige CNTs
- X SiO, Nano Wires

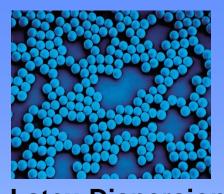
Kolloide und Nanopartikel

Definition von Kolloiden

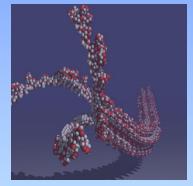
Thomas Graham (1805-1869, Präsident der Chemical Society of London) hat den Begriff "Kolloid" geprägt.


Die Größenordung von Kolloiden liegt zwischen der von Molekülen und derjenigen von makroskopisch erkennbaren Inhomogenitäten von Materie.


Typische Größen: 1 – 500 nm


Kolloidwissenschaften beschäftigen sich mit kolloidalen Partikeln, deren Herstellung, Eigenschaften und Grenzflächen.

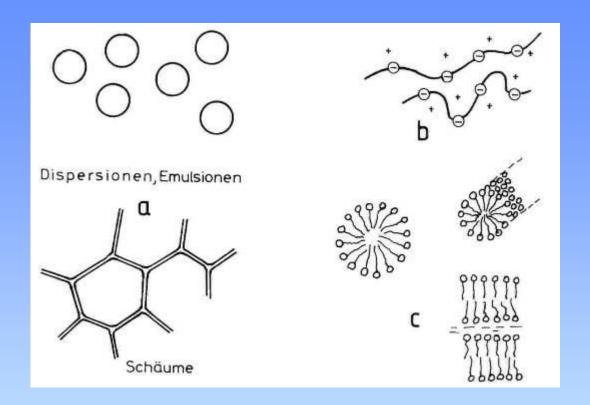
Typische Kolloidsysteme




Latex-Dispersion

Methylcellulose

Xanthan gum



Emulgator-Mizellen

Assoziationskolloid

Arten von Kolloidsystemen

- 3 Arten von kolloidalen Systemen:
- a Zweiphasensysteme (Emulsionen, Dispersionen)
- b Makromoleküle in Lösung (Polymere)
- c Assoziationskolloide

Beispiele von Kolloidsystemen im Alltag

Kontinuierliche Phase	Disperse Phase	Bezeichnung
gasförmig	flüssig	Aerosol (flüssiger Teilchen),
		Dunst, Nebel
gasförmig	fest	Aerosol (fester Teilchen),
		Rauch
flüssig	gasförmig	Schaum
flüssig	flüssig	Emulsion
flüssig	fest	Dispersion (Sol, Suspension,
		Schlicker, Paste)
fest	gasförmig	fester Schaum
fest	flüssig	feste Emulsion
fest	fest	festes Sol, fest-fest-Dispersion,
- 5550 (500)		Legierung

Zweiphasen Kolloidsysteme

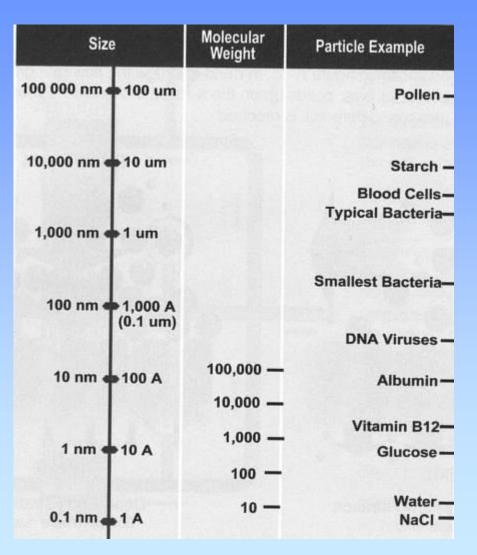
Beispiele: Milch, Mayonnaise, Bailey's

Wässrige Ton- oder Zementsuspensionen

Kolloidales Gold (Rubinglas)

Zeolithe

Dispersionsfarben


Definitionen von Nanopartikeln

3 Definitionen:

- a) Partikel im Größenbereich 1 1000 nm
- b) Partikel im Größenbereich 1 100 nm
- c) Partikel in einem Größenbereich, in dem eine diskontinuierliche Änderung der Eigenschaften mit der Größe eintritt
- = "Quantum Size Effekt"

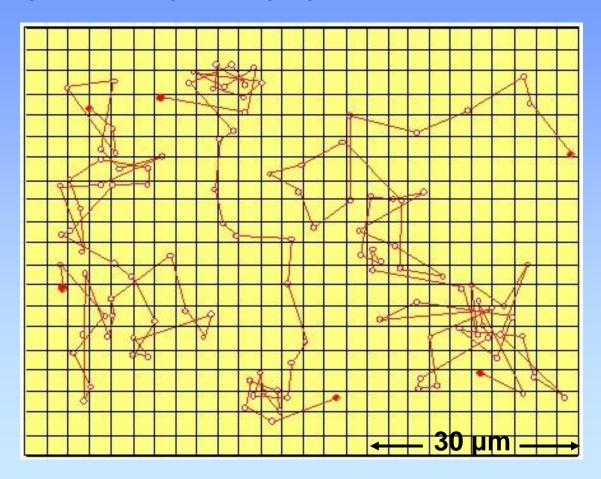
II Verhalten von Kolloiden und Nanopartikeln

Partikeldurch- messer/nm	Totale Anzahl an Atomen	Anteil an Oberflächen- atomen/%
20	250 000	10
10	30 000	20
5	4 000	40
2	250	80
1	30	99

Zunahme des Anteils von Oberflächenatomen mit abnehmender Partikelgröße

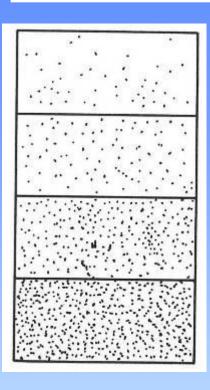
Oberflächenatome weisen ungesättigte Bindungen bzw. Koordinationssphären auf, verhalten sich anders als Atome im Inneren des Teilchens

Folge:


Das chemisch-physikalische Verhalten des Teilchens ändert sich grundlegend

Brown'sche Molekularbewegung

Brown'sche Molekularbewegung:


Vom schottischen Botaniker Robert Brown im Jahr 1827 entdeckte, thermisch getriebene Eigenbewegung der Moleküle.

Spontane Bewegung kolloidaler Teilchen unter dem Mikroskop

Diffusion und Sedimentation

Teilchen unterschiedlicher Größe (Gleichgewicht zwischen Sedimentation und Brown'scher Molekularbewegung)

	ON FÜI	N FÜR KUGELFÖRMIGE PARTIKEL [28].		
Partike durch- messer		Mittlerer Fort- bewegungs- radius durch Brownsche Bewegung/µm	Wegstrecke durch gravitative Sedimentation /µm	
0,1		2,358	0,005	
0,5		1,052	0,138	
1,0		0,745	0,554	
5,0		0,334	13,848	
10,0		0,236	55,398	

zugrundeliegende Daten: Zeitdauer 1 s, Partikeldichte 2000 kg/m³, Medium: Wasser 21 °C

Sedimentationsgleichgewicht feiner Teilchen

$$d \ln c_{_{i}} = \frac{-M_{_{i}} \cdot g \cdot dh}{RT}$$

c= Konzentration

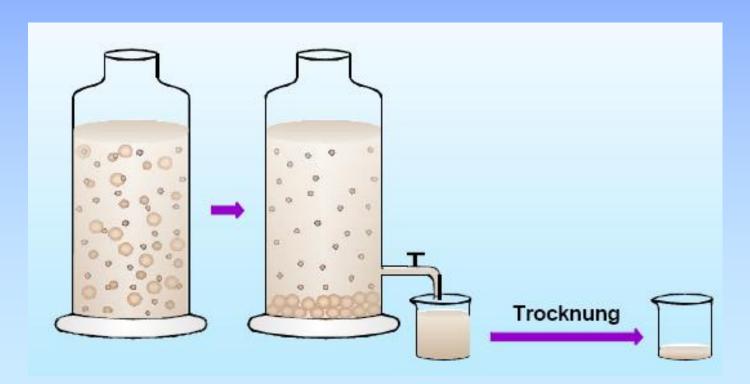
M= Molmasse

g= Erdbeschleunigung

h= Höhe

R= Gaskonstante

T= Temperatur

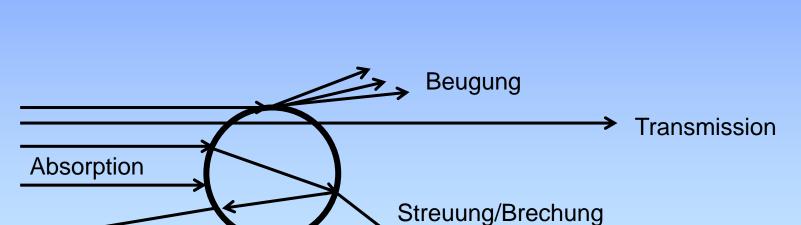


Brown'sche Molekularbewegung - Anwendung

Anwendung der Brown'schen Molekularbewegung für die Analytik

Atterberg-Analyse von Tonen (Atterberg-Zylinder)

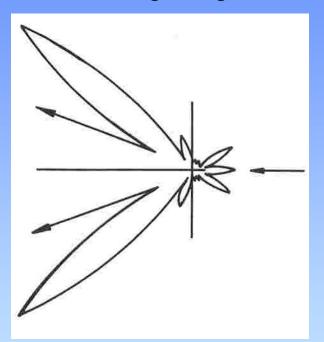
Dynamische Lichtstreuung (Photonenkorrelationsspektroskopie)



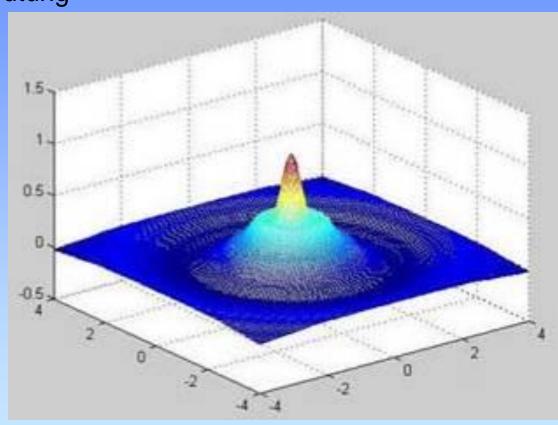
Lichtstreuung

Wechselwirkung von Teilchen mit Licht:

- a Absorption
- **b** Transmission
- c Streuung
- d Brechung
- e Beugung


Mie-Theorie

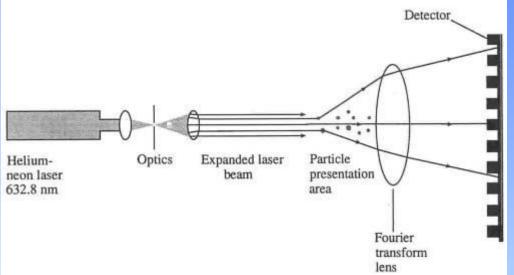
G. Mie, Ann. Phys. (Leipzig) 330 (1908), 377.

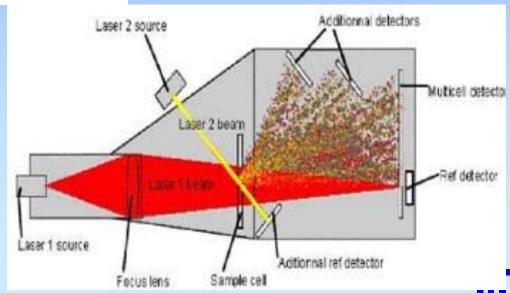


Lichtstreuung

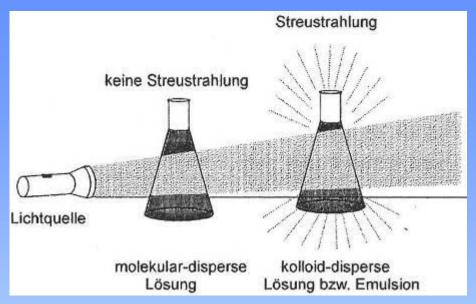
In kolloidalen Systemen gilt: Partikelgröße ~ Wellenlänge des Lichts → Streuung hat größte Bedeutung

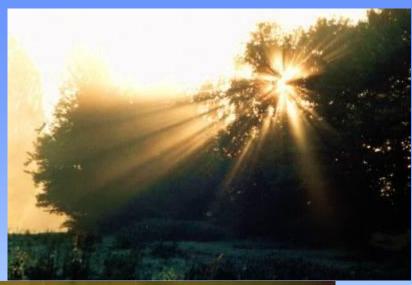
Berechnetes Streulichtmuster eines runden Teilchens nach Mie-Theorie


3D-Streulichtmuster eines Partikelgemisches


Lichtstreuung

In kolloidalen Systemen gilt: Partikelgröße ~ Wellenlänge des Lichts


→ Streuung hat größte Bedeutung



Schematischer Aufbau eines Lasergranulometers

Lichtstreuung: Tyndall-Effekt

Versuch: Tyndall-Effekt

